色偷偷偷久久伊人大杳蕉,色爽交视频免费观看,欧美扒开腿做爽爽爽a片,欧美孕交alscan巨交xxx,日日碰狠狠躁久久躁蜜桃

x
x

大幅提高48 V至12 V調(diào)節(jié)第一級(jí)的效率

發(fā)布時(shí)間:2024-7-18 19:48    發(fā)布者:eechina
關(guān)鍵詞: 48V , 12V , 降壓轉(zhuǎn)換
作者:Alexandr Ikriannikov,研究員;Laszlo Lipcsei,產(chǎn)品應(yīng)用總監(jiān)
ADI公司

摘要

48 V配電在數(shù)據(jù)中心和通信應(yīng)用中很常見,有許多不同的解決方案可將48 V降壓至中間電壓軌。最簡(jiǎn)單的方法可能是降壓拓?fù),它可以提供高性能,但功率密度往往不足。使用耦?a href="http://www.54549.cn/keyword/電感" target="_blank" class="relatedlink">電感升級(jí)多相降壓轉(zhuǎn)換器可以大幅提高功率密度,這種方案與先進(jìn)的替代方案不相上下,同時(shí)保持了巨大的性能優(yōu)勢(shì)。多相耦合電感的繞組之間反向耦合,因而各相電流中的電流紋波可以相互抵消。這種優(yōu)勢(shì)可以用來(lái)?yè)Q取效率的改善,或者尺寸的減小和功率密度的提高等。本文介紹了一個(gè)示例,其磁元件的體積和重量只有原來(lái)的1/4,使得1.2 kW解決方案符合1/8磚的行業(yè)標(biāo)準(zhǔn)尺寸,并且峰值效率高于98%。本文還重點(diǎn)討論了如何根據(jù)耦合電感的品質(zhì)因數(shù)(FOM)優(yōu)化48 V拓?fù)。專注于DC-DC轉(zhuǎn)換領(lǐng)域的工程師將會(huì)對(duì)此感興趣。

引言

48 V配電軌通常會(huì)降壓至某個(gè)中間電壓,往往是12 V或更低,然后不同的本地負(fù)載點(diǎn)穩(wěn)壓器直接向不同負(fù)載提供各種不同的電壓。對(duì)于48 V至12 V降壓調(diào)節(jié)器,首選之一是多相降壓轉(zhuǎn)換器(圖1)。這種解決方案提供穩(wěn)壓VO和快速瞬態(tài)性能,很容易實(shí)現(xiàn)且成本較低。對(duì)于幾百瓦到>1 kW的功率范圍,可以考慮四相并聯(lián)。然而,高效率通常是一個(gè)優(yōu)先考慮因素,與12 V甚至5 V輸入的較低電壓應(yīng)用相比,48 V轉(zhuǎn)換器為了保持低開關(guān)損耗,開關(guān)頻率通常相對(duì)較低。這會(huì)在“伏特×秒”方面對(duì)磁元件造成雙重?fù)p害,因?yàn)橐呀?jīng)很明顯的電壓也會(huì)作用相對(duì)較長(zhǎng)的時(shí)間。因此,與較低電壓應(yīng)用相比,48 V的磁元件通常體積較大,并使用多匝繞組來(lái)承受顯著提高的“伏特×秒”。48 V降壓轉(zhuǎn)換器仍然可以實(shí)現(xiàn)高效率,但整體尺寸通常相當(dāng)大,其中電感占據(jù)了大部分體積。

基本48 V至12 V ~1 kW降壓轉(zhuǎn)換器具有四相,使用6.8 μH分立電感,開關(guān)頻率為200 kHz。這四個(gè)電感是目前最大和最高的元件,占解決方案體積的大部分。本文的目標(biāo)是保持或提高此初始設(shè)計(jì)所實(shí)現(xiàn)的高效率,但顯著減小磁元件的尺寸。

常規(guī)降壓轉(zhuǎn)換器各相的電流紋波可由公式1求出,其中占空比為D = VO/VIN,VO為輸出電壓,VIN為輸入電壓,L為電感值,F(xiàn)s為開關(guān)頻率。




圖1.使用分立電感的四相降壓轉(zhuǎn)換器。

用漏感為L(zhǎng)k且互感為L(zhǎng)m的耦合電感1-7代替分立電感(DL),CL(耦合電感)中的電流紋波可表示為公式2。6 FOM表示為公式3,其中Nph為耦合相數(shù),ρ為耦合系數(shù)(公式4),j為運(yùn)行指數(shù),僅定義占空比的適用區(qū)間(公式5)。







CL考慮因素

改進(jìn)的第一步是針對(duì)耦合系數(shù)Lm/Lk的幾個(gè)實(shí)際合理值繪制Nph = 4的FOM曲線(圖2)。紅色曲線Lm/Lk = 0表示分立電感的FOM = 1基線。已經(jīng)證明,漏感非常低的陷波CL (NCL)結(jié)構(gòu)一般能實(shí)現(xiàn)非常高的Lm/Lk,因此FOM值也很高。8,9然而,雖然在理想情況下目標(biāo)占空比正好位于第一陷波D = 12 V/48 V=0.25,但有必要考慮VIN和VO的某個(gè)范圍。有時(shí)候,標(biāo)稱VIN可以是48 V或54 V加上一些容差,VO可以調(diào)整為遠(yuǎn)離12 V,等等。如果占空比在D = 0.25附近的某個(gè)范圍內(nèi)變化,為使電流紋波始終受到抑制,應(yīng)選擇具有相當(dāng)大漏感的典型CL設(shè)計(jì),而不是NCL,但FOM值仍然相當(dāng)大。假設(shè)Lm/Lk > 4,與DL基線相比,減小CL中的電感值可能使圖2中的FOM提高約6倍。減少能量存儲(chǔ)會(huì)直接影響所需的磁元件體積。因此,將DL = 6.8 μH降低為CL = 1.1 μH應(yīng)有利于減小尺寸。


圖2.針對(duì)一些不同Lm/Lk值,4相CL的FOM與占空比D的函數(shù)關(guān)系。突出顯示了目標(biāo)區(qū)域。


圖3.DL = 6.8 μH和CL = 4 × 1.1 μH(VIN = 48 V且Fs = 200 kHz)時(shí)的電流紋波與VO的函數(shù)關(guān)系。突出顯示了目標(biāo)區(qū)域。

圖3顯示了相應(yīng)的電流紋波,比較了VIN = 48 V和Fs = 200 kHz條件下的基線設(shè)計(jì)DL = 6.8 μH與建議的4相CL = 4 × 1.1 μH (Lm = 4.9 μH)。在目標(biāo)區(qū)域中,CL的電流紋波與DL的電流紋波相似或更小。這意味著所有電路波形的均方根相似,傳導(dǎo)損耗也相似。相同F(xiàn)s時(shí)的相同紋波還意味著開關(guān)損耗、柵極驅(qū)動(dòng)損耗等也相同,因此這兩種解決方案的效率應(yīng)該非常相似(假設(shè)DL和CL電感損耗的貢獻(xiàn)相似,這是唯一的區(qū)別)。


圖4.四個(gè)DL = 6.8 μH電感(上方)被替換為CL = 4 × 1.1 μH(下方),體積減小到原來(lái)的1/4。


圖5.48 V至12 V調(diào)節(jié)第一級(jí)。元件放置在PCB正面的1/4磚輪廓內(nèi)。將所有~1 mm元件移至底部:1/8磚。

圖4顯示了設(shè)計(jì)的CL = 4 × 1.1 μH,其取代了四個(gè)DL = 6.8 μH電感。5每個(gè)DL的尺寸為28 mm × 28 mm × 16 mm,假設(shè)它們彼此間隔0.5 mm,那么尺寸為56.5 mm × 18 mm × 12.6 mm的4相CL可使磁元件體積減小到原來(lái)的1/4。圖5顯示了完整的1.2 kW 48 V至12 V調(diào)節(jié)解決方案,PCB單面上的元件位于1/4磚輪廓內(nèi)。CL尺寸和封裝經(jīng)過(guò)專門設(shè)計(jì),兩個(gè)CL元件可以安放在行業(yè)標(biāo)準(zhǔn)四分之一磚尺寸內(nèi)。將所有~1 mm元件(FET、控制器IC、陶瓷電容等)放置在PCB底部,從而實(shí)現(xiàn)1/8磚尺寸的1.2 kW解決方案。

性能改善

當(dāng)DL = 6.8 μH電感變?yōu)镃L = 4 × 1.1 μH時(shí),電感中的電流擺率限制也改善了6倍,這有助于改善瞬態(tài)性能。除此之外,盡管磁元件總體積減少到原來(lái)的1/4,但100°C時(shí)的電感飽和額定值提高了約2倍。

圖6顯示了建議的VIN = 48 V解決方案(輸出VO = 12 V)的瞬態(tài)性能。正如所料,對(duì)于變化的負(fù)載電流,反饋將輸出電壓調(diào)節(jié)至預(yù)設(shè)值,同時(shí)補(bǔ)償輸入電壓的任何變化。


圖6.75 A負(fù)載階躍下VO = 12 V輸出(CL = 4× 1.1 μH)時(shí)的瞬態(tài)性能。

所實(shí)現(xiàn)的效率如圖7所示,它可能是首要的性能參數(shù)。它與先進(jìn)的行業(yè)解決方案進(jìn)行了比較:48 V至12 V(固定4:1降壓)LLC,初級(jí)側(cè)和次級(jí)側(cè)均有矩陣變壓器和GaN FET。10所實(shí)現(xiàn)的滿載效率為97.6%,而基準(zhǔn)效率為96.3%。這意味著在全功率下?lián)p耗減少16.6 W,建議的解決方案實(shí)現(xiàn)了1.6倍的改進(jìn)。當(dāng)效率已經(jīng)如此之高時(shí),損耗要降低如此大的幅度通常很難實(shí)現(xiàn)。

尺寸和效率之間的權(quán)衡當(dāng)然是可能的。圖8比較了CL = 4 × 1.1 μH(磁元件尺寸減小到DL的1/4)和更大的CL = 4 × 3 μH(電感體積僅減小到DL的1/2)的效率。物理尺寸較大的CL = 4 × 3 μH具有較高的漏感Lk = 3 μH和較大的互感Lm = 10 μH。這使得Fs可以輕松降低至110 kHz,從而大幅提升整個(gè)負(fù)載范圍內(nèi)的效率。


圖7.與1/8磚尺寸的先進(jìn)48 V至12 V解決方案的效率比較。


圖8.使用耦合電感的建議48 V至12 V解決方案的效率與尺寸權(quán)衡。

結(jié)語(yǔ)

利用耦合電感的優(yōu)勢(shì),48 V至12 V解決方案將磁元件總尺寸減小到基本分立電感的1/4,以行業(yè)標(biāo)準(zhǔn)的1/8磚尺寸實(shí)現(xiàn)了1.2 kW功率。在磁元件尺寸減小4倍的同時(shí),它保持了出色的效率性能,瞬態(tài)電感電流擺率提高了6倍,電感Isat額定值提高了2倍。

與同樣尺寸的業(yè)界先進(jìn)48 V至12 V解決方案相比,它在全功率下的損耗降低了約1.6倍。如果磁元件尺寸的減小幅度可以不那么大,效率還能進(jìn)一步提高。

同時(shí),建議的解決方案提供出色的穩(wěn)壓輸出,可直接放在客戶母板上,并利用標(biāo)準(zhǔn)硅FET進(jìn)一步優(yōu)化成本。與之相比,采用全GaN FET的非穩(wěn)壓4:1 LLC是作為單獨(dú)模塊制造的,并使用具有多層、敏感布局和嵌入式矩陣變壓器的專用PCB。

整體性能改善體現(xiàn)了ADI耦合電感專利IP的優(yōu)勢(shì),我們很高興將其提供給眾多客戶用于DC-DC應(yīng)用。

參考資料
1 Aaron M. Schultz和Charles R. Sullivan。“帶耦合感應(yīng)繞組的電壓轉(zhuǎn)換器及相關(guān)方法!泵绹(guó)專利6,362,986,2001年3月。
2 Jieli Li。 “DC-DC轉(zhuǎn)換器中的耦合電感設(shè)計(jì)。”碩士論文,2001年,達(dá)特茅斯學(xué)院。
3 Pit-Leong Wong、Peng Xu、P. Yang和F. C. Lee。 “采用耦合電感的交錯(cuò)VRM的性能改進(jìn)!薄禝EEE電源電子會(huì)刊》,第16卷第4期,2001年7月。
4 Yan Dong。 “負(fù)載點(diǎn)應(yīng)用中多相耦合電感降壓轉(zhuǎn)換器的研究。”博士論文,2009年,美國(guó)弗吉尼亞理工學(xué)院暨州立大學(xué)。
5 Alexandr Ikriannikov。 “漏感控制得到改進(jìn)的耦合電感。”美國(guó)專利8,102.233,2009年1月。
6 Alexandr Ikriannikov和Di Yao。 “解決耦合電感中的鐵損問(wèn)題!盓lectronic Design News,2016年12月,
7 Alexandr Ikriannikov。 “耦合電感的基礎(chǔ)知識(shí)和優(yōu)勢(shì)!盇DI公司,2021年。
8 Alexandr Ikriannikov。 “多相DC-DC應(yīng)用中磁元件的演變和比較!盜EEE應(yīng)用電源電子會(huì)議,2023年3月。
9 Alexandr Ikriannikov和Di Yao。 “采用多相磁元件的轉(zhuǎn)換器:TLVR與CL和新穎優(yōu)化結(jié)構(gòu)之比較!盤CIM Europe,2023年5月。
10 “EPC9174-評(píng)估板!盓fficient Power Conversion Corporation。

關(guān)于作者
Alexandr Ikriannikov是ADI公司通信和云電源團(tuán)隊(duì)的研究員。他于2000年獲得加州理工學(xué)院電氣工程博士學(xué)位,在那里他跟隨Cuk博士學(xué)習(xí)電力電子學(xué)。他開展了多個(gè)研究生項(xiàng)目,從AC/DC應(yīng)用的功率因數(shù)校正到適用于火星探測(cè)器的15 V至400 V DC/DC轉(zhuǎn)換器。研究生畢業(yè)后,他加入Power Ten,重新設(shè)計(jì)和優(yōu)化大功率AC/DC電源,然后在2001年加入Volterra Semiconductor,專注于低壓大電流應(yīng)用和耦合電感器。Volterra于2013年被Maxim Integrated收購(gòu),Maxim Integrated現(xiàn)在是ADI公司的一部分。目前,Alexandr是IEEE的高級(jí)會(huì)員。他擁有60多項(xiàng)美國(guó)專利,還有多項(xiàng)專利正在申請(qǐng)中,并撰寫發(fā)表了多篇電力電子技術(shù)論文。

Laszlo Lipcsei是ADI公司通信和云電源團(tuán)隊(duì)的總監(jiān)。他擁有布加勒斯特理工大學(xué)自動(dòng)化和計(jì)算機(jī)工程碩士學(xué)位。他于2000年加入O2Micro,專注于電源轉(zhuǎn)換和電池管理IC的定義和開發(fā)工作。2015年,Laszlo加入Maxim Integrated研發(fā)團(tuán)隊(duì),率領(lǐng)團(tuán)隊(duì)開展軟件定義電池的定義和系統(tǒng)開發(fā)。他的團(tuán)隊(duì)還開發(fā)了無(wú)線BMS概念驗(yàn)證電池組,并在2020年CES展會(huì)上進(jìn)行了展示。自2020年初以來(lái),他一直專注于多相和48 V電源轉(zhuǎn)換架構(gòu)開發(fā)。Laszlo擁有50多項(xiàng)專利,還有多項(xiàng)專利正在申請(qǐng)中。

本文地址:http://www.54549.cn/thread-865470-1-1.html     【打印本頁(yè)】

本站部分文章為轉(zhuǎn)載或網(wǎng)友發(fā)布,目的在于傳遞和分享信息,并不代表本網(wǎng)贊同其觀點(diǎn)和對(duì)其真實(shí)性負(fù)責(zé);文章版權(quán)歸原作者及原出處所有,如涉及作品內(nèi)容、版權(quán)和其它問(wèn)題,我們將根據(jù)著作權(quán)人的要求,第一時(shí)間更正或刪除。
您需要登錄后才可以發(fā)表評(píng)論 登錄 | 立即注冊(cè)

關(guān)于我們  -  服務(wù)條款  -  使用指南  -  站點(diǎn)地圖  -  友情鏈接  -  聯(lián)系我們
電子工程網(wǎng) © 版權(quán)所有   京ICP備16069177號(hào) | 京公網(wǎng)安備11010502021702
快速回復(fù) 返回頂部 返回列表